Embryonic Development of the Cardiovascular System

This chapter briefly recapitulates milestones in the morphogenesis of the cardiovascular system. Its focus rests on the development and remodelling of the heart and great arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 74.89 Price includes VAT (France)

Softcover Book EUR 94.94 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Embryology of the Heart

Chapter © 2021

Cardiovascular System Embryology and Development

Chapter © 2017

Cardiovascular System Embryology and Development

Chapter © 2023

References

  1. Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development. 2002;129(19):4613–25. CASPubMedGoogle Scholar
  2. Andelfinger G. Genetic factors in congenital heart malformation. Clin Genet. 2008;73(6):516–27. ArticleCASGoogle Scholar
  3. Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (2) Septation of the atriums and ventricles. Heart. 2003;89(8):949–58. ArticleGoogle Scholar
  4. Anderson GA, Udan RS, Dickinson ME, Henkelman RM. Cardiovascular patterning as determined by hemodynamic forces and blood vessel genetics. PLoS One. 2015;10(9):e0137175. https://doi.org/10.1371/journal.pone.0137175. ArticleCASPubMedPubMed CentralGoogle Scholar
  5. Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, Hrabe de Angelis M, Brown SD, Herault Y. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome. 2012;23(9–10):600–10. https://doi.org/10.1007/s00335-012-9418-y. ArticlePubMedPubMed CentralGoogle Scholar
  6. Baldessari D, Mione M. How to create the vascular tree? (Latest) help from the zebrafish. Pharmacol Ther. 2008;118(2):206–30. https://doi.org/10.1016/j.pharmthera.2008.02.010. ArticleCASPubMedGoogle Scholar
  7. Bamforth SD, Chaudhry B, Bennett M, Wilson R, Mohun TJ, Van Mierop LH, Henderson DJ, Anderson RH. Clarification of the identity of the mammalian fifth pharyngeal arch artery. Clin Anat. 2013;26(2):173–82. https://doi.org/10.1002/ca.22101. ArticlePubMedGoogle Scholar
  8. Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA. Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol. 2004;267(1):190–202. ArticleCASGoogle Scholar
  9. Geyer SH, Weninger WJ. Some mice feature 5th pharyngeal arch arteries and double-lumen aortic arch malformations. Cells Tissues Organs. 2012;196:90–8. https://doi.org/10.1159/000330789.. 000330789 [pii]. ArticlePubMedGoogle Scholar
  10. Geyer SH, Weninger WJ. Metric characterization of the aortic arch of early mouse fetuses and of a fetus featuring a double lumen aortic arch malformation. Ann Anat. 2013;195(2):175–82. https://doi.org/10.1016/j.aanat.2012.09.001.. S0940-9602(12)00139-2 [pii]. ArticlePubMedGoogle Scholar
  11. Geyer SH, Reissig LF, Husemann M, Hofle C, Wilson R, Prin F, Szumska D, Galli A, Adams DJ, White J, Mohun TJ, Weninger WJ. Morphology, topology and dimensions of the heart and arteries of genetically normal and mutant mouse embryos at stages S21-S23. J Anat. 2017;231(4):600–14. https://doi.org/10.1111/joa.12663. ArticlePubMedPubMed CentralGoogle Scholar
  12. Handschuh S, Beisser CJ, Ruthensteiner B, Metscher BD. Microscopic dual-energy CT (microDECT): a flexible tool for multichannel ex vivo 3D imaging of biological specimens. J Microsc. 2017. https://doi.org/10.1111/jmi.12543. ArticleCASGoogle Scholar
  13. Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis. Cold Spring Harb Perspect Med. 2014;4(10):a015750. https://doi.org/10.1101/cshperspect.a015750. ArticleCASPubMedPubMed CentralGoogle Scholar
  14. Linask KK, Yu X, Chen Y, Han MD. Directionality of heart looping: effects of Pitx2c misexpression on flectin asymmetry and midline structures. Dev Biol. 2002;246(2):407–17. https://doi.org/10.1006/dbio.2002.0661.. S0012160602906615 [pii]. ArticleCASPubMedGoogle Scholar
  15. Liu X, Tobita K, Francis RJ, Lo CW. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models. Birth Defects Res C Embryo Today. 2013;99(2):93–105. https://doi.org/10.1002/bdrc.21037. ArticleCASPubMedPubMed CentralGoogle Scholar
  16. Liu M, Maurer B, Hermann B, Zabihian B, Sandrian MG, Unterhuber A, Baumann B, Zhang EZ, Beard PC, Weninger WJ, Drexler W. Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages. Biomed Opt Express. 2014;5(9):3150–9. https://doi.org/10.1364/boe.5.003150. ArticlePubMedPubMed CentralGoogle Scholar
  17. Männer J. The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat. 2009;22(1):21–35. https://doi.org/10.1002/ca.20652. ArticlePubMedGoogle Scholar
  18. Mohun TJ, Weninger WJ. Imaging heart development using high-resolution episcopic microscopy. Curr Opin Genet Dev. 2011;21(5):573–8. https://doi.org/10.1016/j.gde.2011.07.004.. S0959-437X(11)00111-0 [pii]. ArticleCASPubMedPubMed CentralGoogle Scholar
  19. Moon AM. Mouse models for investigating the developmental basis of human birth defects. Pediatr Res. 2006;59(6):749–55. https://doi.org/10.1203/01.pdr.0000218420.00525.98. ArticlePubMedPubMed CentralGoogle Scholar
  20. Norris FC, Wong MD, Greene ND, Scambler PJ, Weaver T, Weninger WJ, Mohun TJ, Henkelman RM, Lythgoe MF. A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet. 2013;29(12):700–11. https://doi.org/10.1016/j.tig.2013.08.004. ArticleCASPubMedGoogle Scholar
  21. Ribeiro I, Kawakami Y, Buscher D, Raya A, Rodriguez-Leon J, Morita M, Rodriguez Esteban C, Izpisua Belmonte JC. Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One. 2007;2(4):e398. https://doi.org/10.1371/journal.pone.0000398. ArticleCASPubMedPubMed CentralGoogle Scholar
  22. Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res. 2009;104(5):576–88. https://doi.org/10.1161/CIRCRESAHA.108.188805. ArticleCASPubMedGoogle Scholar
  23. Tobita K, Liu X, Lo CW. Imaging modalities to assess structural birth defects in mutant mouse models. Birth Defects Res C Embryo Today. 2010;90(3):176–84. https://doi.org/10.1002/bdrc.20187. ArticleCASPubMedGoogle Scholar
  24. Weninger WJ, Geyer SH, Mohun TJ, Rasskin-Gutman D, Matsui T, Ribeiro I, Costa Lda F, Izpisua-Belmonte JC, Müller GB. High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat Embryol. 2006;211(3):213–21. ArticleGoogle Scholar
  25. Weninger WJ, Geyer SH, Martineau A, Galli A, Adams DJ, Wilson R, Mohun TJ. Phenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy. Dis Model Mech. 2014;7(10):1143–52. https://doi.org/10.1242/dmm.016337.. 7/10/1143 [pii]. ArticlePubMedPubMed CentralGoogle Scholar

Author information

Authors and Affiliations

  1. Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria Wolfgang J. Weninger & Stefan H. Geyer
  1. Wolfgang J. Weninger